

Regional Climate Modeling: Methodological issues and experimental designs

John Mejia, Darko Koracin, and collaborators. Desert Research Institute, Reno, NV

2 February 2010, Las Vegas, NV

e B

JULL

and

Education

Change Science,

Climate

Infrastructure for

dø

 $\tilde{\mathbb{O}}$

Concept of Regional Climate Models (RCMs)

- Forcing data derived from Atmospheric Ocean Global Climate Models (AO-GCM).
- Nested RCM technique or limited area models as a tool for <u>dynamical downscaling</u>.
 - Similar to numerical weather forecasting but with long-term integrations (computer resources limitations) and some adaptation for consistency with the changing climate.

Regional Climate Modeling: Present and Future assessments

•World Climate Research Programme (WCRP) /CORDEX : Multiple agencies and models with fixed AOGCM forcing. Africa and other continental size regions; 50 km grid size.

•North American Regional Climate Change Assessment Program (UCAR/NARCCAP) : Multiple model and AOGCM forcing. Systematically investigating the uncertainties in future climate projections; 50 km grid size.

•Illinois State Water Survey Climate extension of WRF model. (Dr. Liang personal communication) Integrated Regional Earth System Modeling. Ensemble ...Just to mention a few ...

Objective

• This task aims to implement and develop transportable methodologies to improve the applicability of GCMs in climate impact, developing and using a state-of-the-art RCM based in WRF, and to provide these results to the research, education and decision making community.

Surface boundary improvement

Dynamical downscaling: Regional climate modeling using Weather and Research Forecasting (WRF) model

- <u>Forcing data</u>: Initial efforts using CCSM3 (soon V.4) and NCEP/NCAR global reanalysis products (NNRP).
- SST Updates.
- Integration mode: Spectral nudging (k=3) over D01 with relatively weak nudging factors. Only layers above the PBL are nudged.
- <u>Convection</u>: Kain-Fritsch for D01 and D02.
- Microphysics : single-moment 5-class.
- <u>PBL</u>: YSU
- <u>LSM</u>: a modified 4-layer NOAH-distributed (NCAR; Gochis and Chen 2009); water routing routine for surface and underground runoff.
- <u>Radiation</u> (SW and LW): RRTMG and CAM with GHG and aerosols updates.

Considered GHC and aerosol emission scenarios

 Selected scenarios for our project: B1, A1B and A2 ('low', 'medium', and 'high' scenario, respectively).

CO2 emissions for different socio-economical and environmental scenarios (IPCC-2007 report: http://www.ipcc-data.org/)

Dynamical downscaling: Regional climate modeling using Weather and Research Forecasting (WRF) model

• PLAN:

Scenario	1970s	1980s	1990s	2000s	2010s	2020s	2030s	2040s	2050s	2060s	2070s	2080s	2090s
NCEP													
CCSM-A1E	}												
CCSM-A2													
CCSM-B2													

Schematic of the integration periods (shaded boxes) for different scenarios for the RCM downscaling approach. All simulations total 250 years.

- Bulk of the computation would take about 6 months
- Hourly and 3 hourly RCM output data.
- Some data archiving issues: Available storage space 150T but need about 300TB.

Adaptation of WRF for long-term integration mode

e.g. Radiative forcings, emissivity, land use, vegetation type...

Cyberinfrastructure

"GridLogin": 80 nodes (8 cores each = 640 cores); each node with 16GB and 146 Gb disk space. Infiniband connectivity . 150 TB storage capacity. (Physically at DRI)

Cluster performance

Computer system is operational, but the performance and stability is still not satisfactory.

CORES	4	8	16	24	32	48	64	96	104
Clock time (hh:mm:ss)	4:36:11	2:07:32	1:41:06	1:09:13	1:01:12	00:45:05	00:34:08	00:27:19	00:25:50
Efficiency (Clock/Simulat ion time)	0.153	0.071	0.056	0.038	0.034	0.025	0.019	0.015	0.014

30-hour WRF clock time for different core numbers in GridLogin and its efficiency

30-hour WRF clock time for different core numbers in GridLogin and its efficiency.

As we speak...

			Year 1				Yea	ar 2			Year 3				Year 4				Year 5			
NCEP/NCAR-WRF		I.	1	Ш	IV	I.	1	III	IV	I.	1	Ш	IV	I.	1	Ш	IV	I.	1	III	IV	
Vaara	Spinup May 1 to																					
70.75	Aug 51																					
70-75																						
75-80																						
80-85																						
85-90																						
90-95																						
95-00																						
00-05																						
2005-2008																						
Total Processors	512																					
Estimated time	45 days																					

Fall-Winter, 1970

An example of Dynamical Downscaling: Mean Surface Temperatures

NCEP/NCAR reanalysis ~250 km

D01= 36 km

Fall-Winter, 1970

Downscaling Sfc Temperatures

Fall-Winter , 1970

Linkages with Other Components

- Cyberinfrastructure
 - Link to data portal and processing software
- Landscape change (land-atmosphere interactions)
 - Paleoclimate modeling
 - Climate modeling
- Water Resources
 - Climate predictions of water resources, their variability, uncertainties, and socio-economic impacts
- Policy
 - Alternative Future scenarios (urbanization); socio-economic aspects of future water supply
- Education Graduate students, post doctoral fellows

Linkages with Other Components: Hydrological applications

Links with different hydrological modeling teams.

Foster a more formal and dynamical collaboration between different hydrological groups and our Climate Modeling activities My personal focus: The land-atmosphere coupling –<u>Hydroclimatology</u> studies.

Output Variables

3D fields (3 hourly)	3D fields (hourly)							
U: x-wind component	TSLB: Soil Temperature							
V: y-wind component	SMOIS: Soil Moisture							
W: z-wind component	SH2O: Soil Liquid Water							
H: Geopotential Height								
T: Potential Temperature								
P: Pressure								
QVAPOR: Water Vapor Mixing Ratio								
QCLOUD: cloud water mixing ratio								
QRAIN: Rain Water Mixing Ratio								
QICE: Ice Mixing Ratio								
QSNOW: Snow Mixing Ratio								
2D fields (3 hourly)	2D fields (hourly)							
Fraction of Frozen Precipitation	POTEVP: accumulated potential evaporation							
SST: Sea Surface Temperature	SNOPCX: snow phase change heat flux							
	SOILTB: bottom soil temperature							
	Q2: QV at 2 M							
	T2: TEMP at 2 M							
	TH2: POT TEMP at 2 M							
	PSFC: SFC PRESSURE							
	U10: U at 10 M							
	V10: V at 10 M							
	SMSTAV: Moisture Availability							
	SMSTOT: Total Soil Moisture							
	SFROFF: Surface Runoff							
	UDROFF: Underground Runoff							
	SFCEVP: Surface Evaporation							
	GRDFLX: Ground Heat Flux							
	ACGRDFLX: Accumulated Ground Heat Flux							
	ACSNOW: Accumulated Snow							
	ACSNOM: Accumulated Melted Snow							
	SNOW: Snow Water Equivalent							
	SNOWH: Physical Snow Depth							

Output Variables

2D fields (hourly)

.

RHOSN: Snow Density CANWAT: Canopy Water TSK: Surface Skin Temperature **RAINC: Accumulated Total Cumulus Precipitation RAINNC: Accumulated Total Grid Scale Precipitation** SNOWNC: Accumulated Total Grid Scale Snow And Ice GRAUPELNC: Accumulated Total Grid Scale Graupel SWDOWN: Downward Short Wave Flux At Ground Surface GLW: Downward Long Wave Flux At Ground Surface ACSWUPT: Accumulated Upwelling Shortwave Flux At Top ACSWUPTC: Accumulated Upwelling Clear Sky SW Flux At Top ACSWDNT: Accumulated Downwelling Shortwave Flux At Top ACSWDNTC: Accumulated Downwelling Clear Sky SW Flux At Top ACSWUPB: Accumulated Upwelling Shortwave Flux At Bottom ACSWUPBC: Accumulated Upwelling Clear Sky SW Flux At Bottom ACSWDNB: Accumulated Downwelling Shortwave Flux At Bottom CSWDNBC: Accumulated Downwelling Clear Sky SW Flux At Bottom ACLWUPT: Accumulated Upwelling Longwave Flux At Top ACLWUPTC: Accumulated Upwelling Clear Sky Longwave Flux At Top ACLWDNT: Accumulated Downwelling Longwave Flux At Top ACLWDNTC: Accumulated Downwelling Clear Sky Longwave Flux At Top ACLWUPB: Accumulated Upwelling Longwave Flux At Bottom ACLWUPBC: Accumulated Upwelling Clear Sky Longwave Flux At Bottom ACLWDNB: Accumulated Downwelling Longwave Flux At Bottom ACLWDNBC: Accumulated Downwelling Clear Sky Longwave Flux At Bottom **OLR: TOA Outgoing Long Wave EMISS: Surface Emissivity** PBLH: PBL Height HFX: Upward Heat Flux At The Surface QFX: Upward Moisture Flux At The Surface LH: Latent Heat Flux At The Surface ACHFX: Accumulated Upward Heat Flux At The Surface ACLHF: Accumulated Upward Latent Heat Flux At The Surface

Future steps

- Soon! ~ 2 months. Simulations from present climate (1970-2008).
- Statistical and dynamical downscaling applied to hydrological modeling (offline and couple modes)
- Analysis of Extreme weather events and statistics
- Ensemble approach to regional climate projections

Acknowledgements

- Dr. Ramesh Vellore; T. McCord (DRI/DAS)
- Dr. Rubby Leung (Pacific Northwest National Laboratory)
- Dr. Xin-Zhong Liang (University of Illinois at Urbana-Champaign)
- Dr. David Gochis (UCAR/RAL)
- Dr. Zhongbo Yu and Dr. Chuanguo Yang (UNLV)
- Paul Neeley and Edward Novak (DRI/IT), and Jim Tuccillo (Sun Microsystems)

Contact us

<u>John.mejia@dri.edu</u> <u>Darko.Koracin@dri.edu</u>